
Predicting the NCAA Men’s Basketball

Tournament with Machine Learning

Andrew Levandoski and Jonathan Lobo

CS 2750: Machine Learning

Dr. Kovashka

25 April 2017

Abstract

As the popularity of the NCAA Men’s Basketball Tournament grows, so have bracket competitions,

with nearly 19 million people attempting to predict the game outcomes of the 2017 tournament.

With billions of dollars at stake to reward correct predictions, many people are turning to platforms

based on machine learning models to construct their brackets. To develop an understanding of which

attributes and techniques are essential for developing the most accurate predictions for each game

played during the tournament, this paper analyzes Adaptive Boosting, K-Nearest Neighbors, Näıve

Bayes, Neural Network, logistic regression, Support Vector Machine, and Random Forest learning

models. In training the models on both classification and win probabilities, each method could be

evaluated based on accuracy, bracket score, and log loss; based on these metrics, the regression, neural

net, and random forest models performed exceptionally well. The neural net predicted outcomes with

80% accuracy while regression scored the lowest log loss. The random forest model constructed the

highest-scoring bracket, earning 900 points for the 2017 tournament, well above the average score of

human participants, 715.4.

1 Introduction

Every year, millions of college basketball fans attempt to predict the outcome of the National Colle-

giate Athletic Association (NCAA) Men’s Basketball Tournament, also known as “March Madness.”

In 2017, nearly 19 million brackets were entered in ESPN’s Tournament Challenge competition,

which challenges participants to predict the result of each game of the post-season tournament. The

tournament consists of six rounds of single-elimination basketball between the 68 teams judged to

1

be the best during the regular season. Before the first round begins, the eight lowest qualifying

teams are matched up in the “First Four” games to determine the last four teams in the field of

64. Ignoring these four play-in games, the tournament is divided into four regions, each with 16

teams ranked from 1 to 16. Each team’s ranking is determined by an NCAA committee based on an

evaluation of each team’s regular season performance. The bracket is structured so that the highest

seed in a region plays the lowest seed, the second highest plays the second lowest, and so on.

Nobody has ever correctly predicted the outcome of all 67 games held during the tournament,

and with good reason. There are 263, or 9.2 quintillion, possible brackets. These microscopic odds

prompted Warren Buffett to famously offer $1 million to anyone who filled out a perfect bracket in

2014, and nobody came close. The disparity in quality between different teams means that many

of these brackets are highly improbable, but historical results and the single-elimination nature of

the tournament tell us to expect the unexpected. One major hindrance to a human’s ability to

make accurate predictions is the presence of bias. Everyone is biased, given the reality is that

there is no clear-cut answer to the question of what factors, or features, contribute to the result

of a game. Through the use of data, however, machine learning algorithms can mathematically

and algorithmically and attempt to learn which statistics correlate the most with the result of a

game. The emergence of more accurate machine learning techniques has led to increased prediction

accuracy using algorithms powered by historical data. These algorithms may even demonstrate that

what our intuition tells is us improbable may not actually be improbable at all.

The primary inspiration for this project stems from Nate Silver’s FiveThirtyEight.com predic-

tion platform, an extremely popular resource for bracket construction. The platform offers both

predictions and likelihoods of all potential matchup outcomes. Furthermore, Kaggle.com’s annual

March Machine Learning Mania competition [1], which accepts model submissions and determines a

winner based on the prediction accuracy, offers several examples of successful techniques for bracket

prediction. The winner of Kaggle’s 2016 competition employed Random Forests, a supervised learn-

ing method in which different decision trees are trained on different random subsets of features at

training time and the output class is the mean prediction of the individual trees. In addition to

Random Forests, the other models we will consider are k-Nearest Neighbors, Logistic Regression,

Neural Network, Naive Bayes, Support Vector Machines, and Adaptive Boosting (AdaBoost).

This paper will detail the success of various machine learning techniques on predicting the results

of the 2017 tournament as well as discuss the implementation of the random forest algorithm used

in our model. Section 2 contains a discussion on previous work on the problem of predicting the

2

NCAA basketball tournament. Section 3 will develop the problem in further detail. In Section 4,

we will report our findings and finally, the paper concludes in section 5.

2 Background

Figure 1: The results of the 2017 tournament.

Most previous work analyzing outcomes of NCAA Basketball games has been developed in the

context of statistical modeling, rather than machine learning to predict future games. Further, we

have found that existing work which employs machine learning techniques often suffers from poor

feature selection. Thus, we intend for the work in this paper to fill this void and to offer a accurate

model using learning techniques without overfitting or introducing bias through the inclusion of

inappropriate features.

Lopez and Matthews [2] develop a model for submission to the Kaggle competition in which

they predict the tournament outcome using logistic regression based on efficiency metrics and the

Las Vegas point spread. The point spread, or betting line, for a given game is set by sports betting

agencies to a value that indicates which team is the favorite to win the game, and by how many

points. Bettors can win money if they wager money on the correct side of this threshold. Contrary

to popular belief, the point spread is not set to a number that Las Vegas believes to be the most

3

likely margin of victory. Rather, since sports betting agencies are motivated by making profits, the

margin of victory is set to a number that they feel will cause an equal number of people to bet on

the underdog as on the favorite. The authors conducted a simulation study of their model, and

found that it provided less than a 50% chance of being in the top 10 of the Kaggle competition and

less than 20% chance of providing the smallest log-loss in the competition. The inaccuracy in their

model is driven at least in part by their inclusion of the Las Vegas point spread as a key factor in the

model; the spread is determined subjectively and is not necessarily a good indicator of tournament

game outcomes.

Yuan et al. [3] present the results of a team of modelers working together to forecast the 2014

tournament. In particular, they highlight the difficulty of predicting the tournament accurately,

noting that most of their models failed to outperform the baseline prediction of 0.5 win probability

for all games. The group of modelers produced more that 30 different models including both team-

and player-level data, the majority of which were variants of logistic regression, decision trees, and

neural networks. The models were trained on 10 years of historical data from a variety of public

sources, including various offensive and defensive efficiency statistics, algorithmic ranking systems

for the tournament teams, and raw season statistics. The researchers report that logistic regression,

with significant regularization to prevent overfitting, demonstrated the best results, but that feed-

forward neural networks and stochastic gradient boosting also saw success. Finally, they discuss the

interesting finding that ensemble methods did not outperform the individual models, perhaps due

to overfitting to the training data.

Zimmermann, Moorthy, and Shi [4] use machine learning techniques to train classification learners

that can predict the outcome of games. They note that college basketball teams only play 30 games

per season, can choose their own regular season opponents, and have little consistency in team

composition from one year to the next due to the graduation of players. Furthermore, there is

far more of a disparity in team quality than there is in professional athletics, which can distort

perceptions of team quality. The researchers evaluated decision trees, rule learners, multilayer

perceptron (neural network), Naive Bayes, and random forest. For their team attributes, rather

than raw average statistics, they used adjusted efficiency statistics, which were calculated relative

to all other teams. They claim that explicitly modeling the difference between teams’ attributes did

not improve prediction accuracy. They ultimately arrive at the interesting conclusion that feature

selection seems to be much more important than model selection, and that there seems to be an

“glass ceiling” on the predictive quality of their models at around 75%.

4

Coleman et al. [5] discuss the flaws in NCAA tournament seeding, driven primarily by human bias

held by members of the NCAA tournament selection committee. The researchers find substantial

evidence of seeding bias in favor of virtually all major and mid-major conferences in selection and/or

seeding, as well as evidence of bias toward majors over mid-majors. They also find substantial

evidence of bias toward teams with some type of representation on the selection committee. Verifying

these conclusions ourselves, we eliminated the use of seeding from our models.

3 Problem Statement

The models discussed in this paper serve two purposes: to construct brackets based on classification

and to develop outcome probabilities for each game. Because of the sequential nature of the games

played in the tournament, there are multiple ways to evaluate the models. The first and most naive

method of evaluation is to compute the outcome of every potential tournament game and compute

the accuracy on the results of the games actually played. Because there are 68 teams in the tourna-

ment, there are 2278 games that could possibly occur in the tournament, but only 67 of them will

actually occur, meaning that most of these predictions go untested. Next, we can use our models to

generate an actual bracket and evaluate its accuracy based on a commonly used points system (10

points each for correct first round predictions, 20 for second round, 40 for third round, etc.). In this

system, the value of predictions is not weighted equally between the games. Most websites offering

competitions to fill out the “best” bracket use this scoring system, but the system suffers from its

somewhat arbitrary nature and a lack of statistical significance. The final evaluation method we can

use is a log-loss based on outcome probabilities provided by our models:

LogLoss= −1
n

∑n
i=1 = [yilog(ŷi) + (1 − yi)log(1 − ŷi)]

where n is the number of games played, ŷi is the predicted probability of team 1 beating team

2, and yi is 1 if team 1 wins, 0 if team 2 wins.

A smaller log loss is better. For our purposes, games which are not played are ignored in the

scoring. Play-in games are also ignored, so only the games among the final 64 teams are scored.

The use of the logarithm provides extreme punishments for being both confident and wrong. In the

worst possible case, a prediction that something is true when it is actually false will add an infinite

value to the error score; to prevent this, predictions must be bounded away from the extremes by a

5

small value. We can compare the LogLoss score of one algorithm to the score of another algorithms

to evaluate relative performance.

Section 3.1 discusses the nature of the data used to train our models, and Section 3.2 deals with

feature selection. In Section 3.3 we discuss the advantages to using particular techniques on for this

problem, and section 3.4 details our own model based on random forests.

3.1 Data Source

Below are descriptions of all of the data files and statistics used in the models. The data is from

Kaggle’s Machine Learning Mania dataset.

3.1.1 Teams

This file identifies the different college teams present in the dataset. Each team has a 4 digit id

number.

3.1.2 Seasons

This file identifies the different seasons included in the historical data, along with certain season-level

properties. The file contains the following fields:

• “season” - the year in which the tournament was played

• “dayzero” - the date corresponding to daynum=0 during that season.

• “regionW/X/Y/Z” - the region which a team was assigned to

3.1.3 RegularSeasonCompactResults

This file identifies the game-by-game results for 32 seasons of historical data, from 1985 to 2015.

Each year, it includes all games played from daynum 0 through 132 (which by definition is ”Selection

Sunday,” the day that tournament pairings are announced). Each row in the file represents a single

game played. The file contains the following fields:

• “season”

• “daynum”

• “wteam” - the id number of the team that won the game

• “wscore” - the number of points scored by the winning team

• “lteam” - the id number of the team that lost the game

6

• “lscore” - the number of points scored by the losing team

• “numot” - the number of overtime periods in the game, an integer 0 or higher

• “wloc” - the ”location” of the winning team

3.1.4 RegularSeasonDetailedResults

This file is a more detailed set of game results, covering seasons 2003-2016. This includes team-level

total statistics for each game (total field goals attempted, offensive rebounds, etc.) The column

names should be self-explanatory to basketball fans (as above, “w” or “l” refers to the winning or

losing team):

• “wfgm” - field goals made

• “wfga” - field goals attempted

• “wfgm3” - three pointers made

• “wfga3” - three pointers attempted

• “wftm” - free throws made

• “wfta” - free throws attempted

• “wor” - offensive rebounds

• “wdr” - defensive rebounds

• “wast” - assists

• “wto” - turnovers

• “wstl” - steals

• “wblk” - blocks

• “wpf” - personal fouls

3.1.5 TourneyCompactResults

This file identifies the game-by-game NCAA tournament results for all seasons of historical data.

The fields contained in this file are identical to those in RegularSeasonCompactResults.

3.1.6 TourneyDetailedResults

This file contains the more detailed results for tournament games from 2003 onward. The fields

contained in this file are identical to those in RegularSeasonDetailedResults.

7

3.2 Data Construction

The dataset from Kaggle.com provided game-by-game statistics along with the results of each game.

Due to the sequential nature of a basketball season, however, it is not possible to train a model using

individual game statistics and game outcomes and then use this model to predict the outcome of

future games. Before a game occurs, we have no game statistics with which to make a prediction, and

after the game finishes and the stats are available, there is no use of making a prediction. Likewise,

we cannot use average season statistics at the end of the year to train the outcomes of games that

occurred earlier in the year.

Instead, the models are trained based on features that are rolling averages of each statistic

up to, but not including, the current game, that is recomputed after each game. One inherent

limitation of this approach is that earlier in the season, the rolling average of a statistics is based on

a smaller sample size, and may therefore have less predictive power. Another key decision concerns

the relevance of early-season games. As a team evolves over the course of 30 season games, how

much applicability do early games really hold? There is no easy answer to this question. For our

purposes, we limited the rolling average of features to only include the 15 most recent games.

The averages of 14 chosen statistics were calculated both for a team and for all the opponents

they played up to that point in the season. Thus, in each matchup, we use Team A’s averages, Team

A’s opponents’ averages, Team B’s averages, and Team B’s opponents’ averages, plus one additional

feature for game location, for a total of 57 features per example. The statistics we ended up feeding

into the model were the following:

• Points Per Game

• Field Goals Made Per Game

• Field Goals Attempted Per Game

• 3-Pointers Made Per Game

• 3-Pointers Attempted Per Game

• Free Throws Made Per Game

• Free Throws Attempted Per Game

• Offensive Rebounds Per Game

• Defensive Rebounds Per Game

• Assists Per Game

• Turnovers Per Game

• Steals Per Game

8

• Blocks Per Game

• Personal Fouls Per Game

• Game Location: Home or Away/Neutral (binary flag)

Note that the final feature, Game Location, is the only one that is known before a game occurs, and

thus we can use the actual value. Also note that win-loss record (or win percentage), as well a team’s

seed, are not used at all. We verified experimentally that including wins and/or seeding negatively

impacted the classification accuracy of our models. Thus, these statistics were deliberately excluded.

Seeding is inherently biased because it is holistically determined by a human committee. Likewise,

the wins statistic may be misleading because it does not take into account how close the games

were, treating all games equally. Therefore, data on win totals can often be noisy. The worse results

when including win percentage and seed in our model fit with our intuition that win percentage

and seed would be biased, but also highly correlated with the other statistics listed above, and thus

unnecessary to include in our model.

3.3 Techniques

Prior to implementing our own prediction method surrounding the random forests algorithm, we

tested models based on several learning methods to both understand their performance and set a

benchmark for our implementation. Using each technique, we trained our models on the classification

problem of deciding a winner and loser for each matchup as well as the problem of determining the

likelihood of each outcome.

3.3.1 Adaptive Boosting

The AdaBoost model was trained using 100 weak learners, each a decision tree based on selecting

the features and classifier at each stage that provided the lowest error.

3.3.2 K-Nearest Neighbors

The K-Nearest Neighbors model was trained with K = 10 and with each neighbor’s contribution to

the prediction weighted by distance.

3.3.3 Naive Bayes

The Naive Bayes classifier was trained with the assumption that the likelihood of the features was

Gaussian. The parameters of the model were estimated using maximum likelihood.

9

3.3.4 Neural Network

The Neural Network was trained on a network with two hidden layers, each with 30 nodes. The input

layer had dimensionality equal to the number of features, and the output layer had dimensionality

1, outputting 0 or 1 as the class prediction.

3.3.5 Logistic Regression

Logistic regression was used in a binomial setting, with 0 or 1 output to predict the result of a game.

3.3.6 Support Vector Machine

The SVM classifier was trained using an RBF kernel, which gave better performance than linear,

polynomial, and sigmoid kernels.

3.4 Random Forest

The Random Forest Classifier was trained using 300 decision trees, each using a randomly selected

subset of the features, equal to the square root of the input dimensionality. For this problem, each

tree used 8 random features from the 57 available.

A random forest is an ensemble learning method that operates by constructing a multitude

of decision tress at training time, outputting the class that is the mode of results of the trees.

While decision trees alone suffer from overfitting, random forests correct overfitting through bagging.

Figure 2 shows an example of a basic decision tree for our model where f11 represents feature 1 of

the first sample.

Figure 2: A single decision tree classifier

To construct the ensemble of trees used in the random forest classifier, features are drawn ran-

domly, with replacement, and added to a new tree. Figure 3 shows an example construction of the

10

random forest. By decorrelating the individual trees, the random forest mitigates the impact of

overfitting by any one tree.

Figure 3: An ensemble of random decision trees

The final step in the algorithm is to compute a prediction using each tree and to return the mode

to get the forest’s prediction.

4 Results

Upon training and testing each of our chosen learning methods, we found some techniques to be more

successful than others at predicting tournament outcomes while our random forest implementation

performed very well relative to the other algorithms. Section 4.1 contains the results for classification

of winners and losers and section 4.2 evaluates our models based on their predicted win probabilities.

4.1 Classification

Our accuracy metric was computed by predicting the results of every potential game in the tourna-

ment and checking these predictions based on the outcomes of the actual matchups that occurred.

Thus, the consequences of incorrectly predicting an early game are not carried through the rest

of the tournament. The neural net performed the best in this category, achieving 79.4% accuracy

on its predictions. The regression (76.2%), random forest (69.8%), and Bayes (69.8%) models also

performed very well. SVM predicted with 68.3% accuracy and adaptive boosting predicted with

11

66.7% accuracy. K-nearest neighbors performed the worst, predicting 61.9% of the games correctly

(Figure 4).

Figure 4:

Algorithm Accuracy

AdaBoost .667

KNN .619

Bayes .698

Neural Net .794

Regression .762

SVM .683

Random Forest .698

Next, based on the predictions made by each model, we constructed brackets to measure the per-

formance of each algorithm in the setting of a bracket pool. Using this metric, incorrect predictions

at the beginning of the tournament can be propagated through the entire tournament, resulting in

poor scores - thus, we expected the models with high accuracy to perform similarly well by this

measure. Note that while a decent measure of performance for a model (their intended function,

after all), bracket scores are sensitive and heavily subject to the tumult of March Madness. That

said, the random forest model performed the best, earning 900 points on its 2017 bracket predictions.

The regression (670) and neural net (650) models also performed well. Bayes earned 610 points,

K-nearest neighbors earned 600 points, SVM earned 570 points, and adaptive boosting earned 400

points (Figure 5).

Figure 5:

Algorithm Bracket Score

AdaBoost 400

KNN 600

Bayes 610

Neural Net 650

Regression 670

SVM 570

Random Forest 900

12

4.2 Probabilities

To assess the probability predictions made by each model in an appropriate manner, we used the

log loss metric so that we could account for confidence in each prediction e.g. a confident prediction

that is wrong will be penalized more heavily. This metric is also the one we believe has the best

indication of a model’s power since it will be more consistent year-to-year because it is more resistant

to unlikely results in individual matchups. The regression model performed the best with a log loss

of .529. The neural net (.545), random forest (.578), and Bayes (.579) models also performed very

well. The SVM model scored a log loss of .657 and K-nearest neighbors scored a log loss of .687.

Adaptive boosting performed very poorly with a log loss of 1.261 (Figure 6).

Figure 6:

Algorithm Log Loss

AdaBoost 1.261

KNN .687

Bayes .579

Neural Net .545

Regression .529

SVM .657

Random Forest .578

5 Conclusion

In this paper, we describe models for predicting NCAA tournament outcomes using a variety of

machine learning techniques by using aggregated season data. Based on the results presented above,

the regression (76.2% accuracy, 670 points, .529 log loss), random forest (69.8% accuracy, 900 points,

.578 log loss), and neural net (79.4% accuracy, 650 points, .545 log loss) models performed the

most successfully in predicting the 2017 tournament. AdaBoost and KNN performed rather poorly

in terms of all three metrics, suffering from many predictions that were both wrong and highly

confident. Interestingly, SVM performed decently in terms of accuracy but rather poorly in terms

of log-loss. Upon further examination, SVM suffered from the opposite problem of AdaBoost and

KNN; namely, the model had low confidence in its predictions in comparison with the other models,

outputting win probabilities within a much narrower band closer to 0.5. Ultimately, machine learning

models demonstrate greater overall accuracy in predicting NCAA tournament outcomes than the

13

average human. However, it appears as though there is an upper limit to the success that can be

achieved using the attributes that we used for training, and that luck plays a large part in outcome

of a tournament in any given season.

6 Future Work

Because most of the models considered seemed to demonstrate similar levels of success, particularly

with respect to log-loss, we believe that experimenting with different feature selection techniques

rather than models in the future may lead to more significant improvement. There are many potential

explanations as to why our prediction accuracy was not higher.

One potential flaw with the current features selected for our model is that there is no clear

measure for strength of schedule (SOS) or consistency. Frequently used in sports, SOS is a measure

of the average strength of a team’s opponents. Although the average statistics of a team’s opponent

are available, it is unclear if they are influenced more by the team’s skill level or the skill level of their

opponents. Sophisticated and well-regarded Pythagorean team rankings available at Ken Pomeroy’s

KenPom.com could be used to construct a SOS metric. Consistency could potentially be quantified

by season-long variance in individual statistics. Future work on our model could focus integrating

SOS and consistency metrics to determine if test accuracy is increased.

In addition, no existing data directly takes into account intangible factors that may impact the

outcome of basketball games, including the following: experience, leadership, “clutchness” (perfor-

mance in high-pressure situations), luck, injuries, and the benefit of a superstar player. With respect

to some of these intangibles, Pomeroy has developed metrics that attempt to quantify the luck and

the experience level of a team. Incorporating player-level data (such as the season average statistics

of individual players) in addition to team-level data could also help to predict the outcome of a

game.

Another completely different approach to the basketball game prediction problem could be to

view it as a time-series problem, using a recurrent neural network to model a team’s progression

throughout the season. Such a model could be able to quantify the impact of recent performance

versus early-season performance on the outcome of a game.

Finally, predicting the outcome of basketball games presents an interesting dilemma of how to

treat incorrectly predicted games. When classifying Iris species, for instance, a flower will always

be of the same species no matter how many times it is examined. In the case of a basketball

14

game, however, the result of a game in no way guarantees that the outcome will be the same if

the matchup occurs again. Identifying similarities (or differences) between misclassified games could

help determine if there are identifying characteristics to these examples, or if the outcome was simply

highly unlikely. Constructing a metric to quantify the ”unlikeliness” of the outcome of a game could

help avoid overfitting to an unlikely training example. One way to quantify how unlikely the outcome

of a game was could be to determine how much the statistics of the teams in a given game differed

from their season averages. Perhaps, a model is not misguided and should not be penalized for

incorrectly predicting to win a team that should have won.

References

[1] Kaggle, “March machine learning mania 2017.” https://www.kaggle.com/c/march-machine-

learning-mania-2017, 2017. Online; Accessed: 2017-04-04.

[2] M. J. Lopez and G. J. Matthews, “Building an ncaa men’s basketball predictive model and

quantifying its success,” Journal of Quantitative Analysis in Sports, vol. 11, Jan 2015.

[3] L.-H. Yuan, A. Liu, A. Yeh, et al., “A mixture-of-modelers approach to forecasting ncaa tourna-

ment outcomes,” Journal of Quantitative Analysis in Sports, vol. 11, Jan 2015.

[4] A. Zimmermann, S. Moorthy, and Z. Shi, “Predicting college basketball match outcomes using

machine learning techniques: some results and lessons learned,” CoRR, vol. abs/1310.3607, 2013.

[5] B. J. Coleman, J. M. Dumond, and A. K. Lynch, “Evidence of bias in ncaa tournament selection

and seeding,” Managerial and Decision Economics, vol. 31, no. 7, p. 431–452, 2010.

15

