
 1

Blockchain and the Internet of Things: Improving the
Proof of Work Consensus Algorithm

Andrew Levandoski, Jonathan Lobo, Christopher Corsi

Abstract—Internet of Things (IoT) security and privacy
remain a major challenge due to the large scale and distributed
nature of IoT networks. Approaches driven by blockchain (BC)
offer decentralized security; however, they involve significant
energy, delay, and computational overhead that may not be
suitable for the most resource-constrained devices in an IoT
network. In this paper, we discuss how the use of BCs can not only
enhance the security of networks, but also enable new applications
for IoT. Further, we examine the feasibility of the use of BCs for
IoT networks, presenting simulation results to highlight the
overheads in terms of energy consumption, CPU utilization, and
memory writes introduced by proof-of-work (PoW), proof-of-
stake (PoS), and efficient and equitable proof-of-work (ePoW)
consensus algorithms. We show that under appropriate
conditions, the ePoW consensus method enables the use of a BC
for IoT networks as its associated overheads are outweighed by
both gains in security and privacy and potential new applications.

I. INTRODUCTION
IoT consists of devices that generate, process, exchange, and

store security- and safety-critical data. As a result, many IoT
devices are appealing targets for various forms of cyber-attacks
aimed at obtaining and tampering with their data [1]. Further,
the networked devices that constitute the IoT are constrained in
their energy consumption and computational capability,
devoting most of their available resources to core functionality.
Thus, the task of affordably providing security and privacy using
traditional methods can be challenging. In addition to their
expense in terms of energy consumption and processing
overhead, many security frameworks are centralized and not
well-suited for IoT applications due to their difficulty of scale,
many-to-one nature, and single point of failure [2]. In contrast,
IoT demands lightweight, scalable, and distributed security.
Devices can be configured to operate more safely and reliably
with each other’s conditions and requirements within a network
using a private BC. Using a BC, an IoT network can be
configured to perform both user authentication and mutual
authentication between devices to generate and securely store
operation records.

In addition to providing enhanced security, a BC-based IoT
network enables trustless relationships between devices. Smart
contracts – self-executing scripts that reside on the BC – can be
integrated such that the network facilitates proper, distributed,
and heavily automated workflows. However, the use of a BC
within the context of IoT presents several challenges; most
notable is the design of the block creation process, or mining,
which resides at the core of a BC’s functionality. While typically
a computationally taxing procedure, mining must be designed
such that it conforms to the constraints of IoT devices and does

not compromise their core functionalities. Consequently,
various consensus algorithms must be considered so that the
proper method is selected based on the constraints of each
particular IoT application.

The goal of this work is to provide a description of how BCs
and smart contracts work within the context of an IoT network,
to explore use cases for the union of these technologies, and to
present an in-depth analysis of the implementation,
performance, and feasibility of BC consensus algorithms for IoT
networks. The rest of the paper is organized as follows: In
Section II, we present related work. In Section III, we discuss
what a BC is, how a BC network operates, consensus algorithms,
and how smart contracts can be configured and automated.
Section IV contains a discussion of smart contracts. Section V
contains several use cases for the application of BCs to IoT
networks. Section VI contains our simulation methodology and
results. Finally, Section VII concludes the paper.

II. REACHING CONSENSUS ON A BC NETWORK

A. Blockchains
A BC is a distributed data structure that is replicated and

shared among members of a network. Introduced as a ledger for
the cryptocurrency Bitcoin [3], a BC is a continuously growing
list of records, called blocks, which are linked together. Nodes
on the Bitcoin network, called miners, append validated,
mutually agreed-upon transactions to the Bitcoin BC, forming
an authoritative ledger of transactions that establishes who owns
what [4].

Each BC is a log whose records of transactions are batched
into blocks identified by unique hashes. The chain is formed
with each block referencing the hash of the block before it (Fig.
1). Any node with access to the BC can read it to determine the
global state of the data being exchanged on the network [5]. A
BC network is a set of nodes that operate on the same BC via
the copy that each one holds. While a node can can generally act
as a gateway to the network for several users, we will assume
for the sake of simplicity that each node transacts on behalf ofa

Fig. 1. Each block in the chain carries a list of transactions and a hash to the
previous bloack. The exception to this is the first block of the chain which is
common to all nodes in a network and has no parent.

 2

single user. These nodes form a peer-to-peer network where the
following process is repeated:

1) Users interact with the BC using private and public keys [6].
 Each user uses his private key to sign his own transactions
 which are then addressable on the network using his public
 key. Asymmetric cryptography offers authentication,
 integrity, and non-repudiation to the network. Each
 transaction is broadcasted by each node to its one-hop peers.
2) Neighboring peers validate incoming transactions prior to
 replaying them to the rest of the network. If a transaction is
 deemed to be invalid, it is discarded. If not, it is eventually
 proliferated across the entire network.
3) The transactions that have been collected and validated by
 the network within an agreed-upon time interval are ordered
 and packaged into a timestamped candidate block. This
 process is called mining. The mining node broadcasts the
 new block to the network. The choice of the mining node
 and the contents of the block depend on the consensus
 mechanism employed by the network. Consensus
 algorithms can be proof-of-work based (Section III-B),
 proof-of-stake based (Section III-C), or a modified version
 of several methods (Section III-D).
4) Nodes in the network verify that the proposed block
 contains valid transactions and references the correct
 previous block on the chain. If validated, the block is added
 to the chain and the transactions housed within it are applied
 to each node’s world view. If not validated, the block is
 discarded.

Though the above is a high-level view of how a BC network
functions, it is evident that with enough nodes in a network,
there exists a platform through which a set of non-trusting
writers can share a collection of data with no trusted
intermediary [7]. The focus of this paper is how nodes can agree
on transactions and the order in which they are listed on the
newly-mined block. Without a means for consensus, individual
copies of the BC will diverge, causing nodes to have different
views of the world state and compromising the authoritative
chronology of the chain. In the most simplistic scenario, all
nodes could simply vote on the order of transactions for the next
block, with the majority deciding the block. However, in an open
network, a single entity could join with multiple identities to
influence the network with multiple votes [8]. To circumvent
this attack, BC network employ various schemes for the mining
of new blocks, described in the following sections.

B. Proof-of-Work
The Bitcoin BC solves the problem of an easily

compromised network by making mining a computationally
expensive process; as a result, impersonating multiple identities
on a network will not result in increased influence since the
computing resources of any single actor are limited. This
process, called proof-of-work (PoW), specifies that any node
can have their assembled block mined on the network given that
it can solve a complex task. Specifically, in the case of the
Bitcoin BC, each node must determine the correct random
number (nonce) in a block’s header that will result in a SHA-
256 hash [9] containing the number of leading zeroes that the
network expects [10]. The nature of a one-way cryptographic
hash function allows any node to easily verify that a given
answer satisfies a network’s requirements and adopt the
associated block into its world view. It is possible that forks may

still occur under this mechanism when multiples nodes
successfully mine blocks nearly simultaneously. In this event,
the fork is resolved by the next block since PoW dictates that
nodes should adopt the fork that carries the greatest amount of
work; i.e., whichever fork grows longer first will be used.

There are several difficulties associated with the use of a
PoW scheme on a BC network. First, the consensus algorithm
wastes energy by consuming hashing power to obtain one block
compensation during the competitive mining process.
Furthermore, energy is spent unnecessarily by the numerous
nodes mining the same block concurrently. This inefficiency
calls into question the feasibility of such a scheme in a resource-
constrained IoT scenario. In addition, the PoW method is
susceptible to concentrating compensation among nodes with
greater hashing power.

C. Proof-of-Stake
A different method of validating transactions and achieving

distributed consensus on a BC network is through a proof-of-
stake (PoS) scheme. The gains of a PoS-based network come in
the form of significantly less computation during the mining
process. Instead, the creator of the next block is determined
through a combination of random selection and wealth or age
(i.e. a node’s stake in the network). Aside from advantages in
terms of energy-efficiency, PoS schemes offer a greater
incentive strategy for member nodes since each node is seeking
to guard its stake in the network through mining. In contrast,
nodes can mine without possessing any stake under a PoW
scheme and are thus only seeking to maximize their own gain.

However, several issues exist with PoS-based networks.
Several plausible schemes exist for conspiring actors to sabotage
a small enough PoS network by approving invalid blocks to the
network and assuming a loss of currency in the process. Most
notable, however, is the uneven distribution of wealth based on
nodes’ stakes. Nodes with a large stake in the network will be
rewarded for their participation relative to their stake, granting
the power to influence the network to a concentration of nodes.
Several networks are working to solve such inequity [11].

D. PoW Based on Equitable Chance and Energy-Saving
Proposed by the BC-based IoT contract platform Hyundai

Digital Asset Currency (HDAC), ePoW, an algorithm based on
equitable chance and energy-saving, can significantly reduce the
number of nodes actively participating in PoW. The motivation
behind the scheme is to distribute equitable mining opportunities
as well as to minimize energy waste from excessive hashing
power spent during competitive mining.

The ePoW consensus algorithm reduces the mining
monopoly using a block window concept (Fig. 2). By avoiding
spontaneous mining attempts during the block window
application period once mining is successful, ePoW reduces
wasteful energy consumed in excessive hashing calculations.
Even if a greedy node opts to neglect this prescribed mechanism
and succeeds in mining a new block, its block will not be
recognized as valid in the entire network. The block window size
can be expressed in the form of a time function, Ws = f(t), where
f(t) increases in proportion to time. As the window size gradually
increases, so does the difficulty for nodes to monopolize the
mining process. As a result, a more equitable distribution of
mining is achieved in the network.

 3

III. SMART CONTRACTS

A smart contract, introduced in 1994 by Nick Szabo, is
defined as “a computerized transaction protocol that executes
the terms of a contract” [12]. At the highest level, a smart
contract is a contractual clause translated into code and
embedded into hardware or software to enforce its terms so as
to minimize the need for trusted intermediaries between
transacting parties and the occurrence of malicious and
accidental exceptions to its terms [13]. In the context of a BC-
based IoT network, smart contracts are scripts stored on devices
connected to the BC. Since the contracts reside on the BC, they
have a unique address that can be referenced in a transaction
when it is triggered; they can be executed independently and
automatically executed in a prescribed manner on every node
in the network.

A smart contract exhibits the following properties:
1) The contract has its own state and can take custody of
 assets on the BC [14].
2) The contract expresses business logic in code, e.g. “trade 1
 unit of X for every 2 units of Y received”.
3) The contract should describe all possible outcomes of the
 transaction that it is responsible for.
4) The relationship established between parties in the contract
 is data-driven.
5) The contract is triggered by messages and transactions sent
 to its address.
6) The contract is deterministic, i.e. the same input will
 always produce the same output. Without this
 requirement, a contract can execute on every node in the
 network and return different results for each node,
 preventing the network from reach consensus on the
 result. A BC-based platform should therefore employ
 only deterministic contracts.
7) The contract resides on the BC. Therefore, its

 implementation is visible to all network participants.
8) All network participants get a cryptographically verifiable

 trace of the contract’s operations since all the
 contract’s interactions occur via signed messages on the
 BC.

A BC-based network with smart contracts can support both
transactions (asset transfers) and interactions (multi-step
processes) between mutually distrustful counterparties since
the transacting entities can inspect the contracts to identify
outcomes before engaging in them, have certainty of the
contract execution due to the distribution of the network, and
have verifiability throughout the process since all interactions
are digitally signed.

IV. USE CASES

A. Software Distribution
As IoT-based companies become more common and their

devices proliferate, there will be an increasing need for them to
distribute software in order to keep the IoT device ecosystem
sustainable in terms of security and functionality [16]. The
current centralized model of software distribution involves a
high maintenance cost for manufacturers and a degree of
cooperation on behalf of the consumers. These issues can be
solved with a peer-to-peer model that can operate transparently
and distribute data securely.

Consider a BC network one which all of a manufacturer’s
IoT devices reside. The manufacturer can deploy a smart
contract that allows them to store the hash of its latest firmware
update onto the network. The devices, having either shipped
with the smart contract address or discovered it through another
transaction, can query the contract to learn about and request
the new firmware. While the first requests for a file will be
serviced by the manufacturer’s own node, later requests can be
serviced by any node that the file has propagated to. As a result,
software updates can occur automatically without any user
interaction. Further, a device that joins the network after the
manufacturer has ceased its participation can still retrieve
necessary firmware updates and validate that it is receiving the
correct files.

B. Sharing of Computational Resources
Fog computing extends the existing definition of Cloud

computing to include the growing number of networked edge
devices, including IoT devices, as well as smart clients among
end users [19]. For example, a wearable device such as a smart
watch might utilize a connected smartphone’s computational
resources to analyze the data that it collects as opposed to
sending its data to a remote cloud. Fog computing thus creates
an opportunity for users to save money and time on both the
transportation of data and the cost of computation. A BC
network can enable an economy of resource sharing across edge
devices.

Large amounts of processing power and storage sit unused
in the world’s idle routers, tablets, phones, and sensors.
Consider a BC network to which all of these devices are
connected and on which a task can be distributed among the
nodes. Depending on the latency constraints, price
considerations, security restrictions, and the complexity of the
task, smart contracts on the network can arrange to distribute

Fig. 2. The ePoW consensus algorithm.

 4

the task to nodes at prices already agreed upon. Since the
accommodating resources would otherwise be left unused, such
a sharing economy would be certain to bring greater efficiency
to the existing landscape of computing services. In addition,
latency-sensitive tasks could be more easily serviced on edge
nodes than on the cloud, ensuring higher response times in
time-sensitive applications.

C. Efficient Energy Distribution
The electricity sector, though still heavily based on massive,

centralized power plants that generate power sent over long
distances, is becoming increasingly distributed with smaller
power generators and storage systems like solar panels and
electric-vehicle batteries connected to the power grid [18].
Smaller components of this system can struggle to maximize
their value due to the inefficiency of compensation for
electricity production; however, a BC network with smart
contracts could enable producers to receive compensation
immediately.

With such a network, local nodes could trade energy with
each other prior to selling electrons to the grid. Smart contracts
on the network could prescribe rates based on surge times,
power availability, and, in the case of wind- and solar-
harvested energy, forecasted production. Benefits of an IoT-
enabled network could extend to producers as well. For
example, sensors and actuators located in windmills could be
informed of a decrease in demand for electricity and turn off
machinery that would otherwise experience unnecessary
degrees of wear through extraneous operation. Further, power
generated by renewable sources of energy could be easily
distinguished from that generated by fossil fuels due to the
transparency of the network.

D. Supply Chain Verification
In a supply chain example where a container leaves the

manufacturer’s site (point A), gets transported via railway to
the neighboring port (point B), gets shipped to the destination
port (point C), gets transported by truck to the distributor’s
facilities (point D), and finally reaches the retailer’s site (point
E) (Fig. 3), a BC-based IoT network can maintain a ledger
verifiable by all parties involved in the movement of the
container.

Historically, each stakeholder in this process maintains his
own database to keep track of the asset and updates it based on
inputs from other parties. In the proposed scenario, a BC
network run across all of the IoT sensors and actuators along
the supply chain would update with cryptographic verifiability,
update automatically, and form an easily-auditable ledger of
information.

E. Intelligent Transportation Systems and Smart Transit
Intelligent transportation systems (ITS), a fast-growing

sector involving IoT, cloud computing, and data-driven
decisions, needs to consider many issues in its development
including security, trust, and the social complexity of decisions
between vehicles [17]. So that the ITS ecosystem maintains
stability, safety, and effectiveness, there is a critical need to
develop a secured, trustworthy, and decentralized architecture
to facilitate the smooth and intermediator-free flow of data and
assets among ITS entities. A BC network that connects sensors
and actuators found in automobiles and traffic signals with
users and key decision makers is an elegant solution for this
application.

Next, consider a protocol called Transit that connects a
city’s cars, buses, taxis, etc. with users seeking transportation
via internet-connected devices and maintains a distributed
ledger that records all of its users’ past trips, credit cards,
favorite locations, etc. [15]. The standards for sending a Transit
request onto the network would be entirely open and anyone
who built an application to respond to the request is free to do
so. For example, city governments could build Transit
applications for their taxi drivers or public buses, ride-sharing
companies can build applications for their employees, and
bicycle-share collectives could build applications for their
assets, all to field requests. Developers could create shared
marketplace apps where all potential vehicles using Transit
could compete for business in one place.

All of the phones and vehicle sensors connected to the
Transit network could engage in smart contracts to determine a
user’s optimal pricing and time preference for a trip. Trip
services could interact with each other to bid each other down
to the point of optimal efficiency in terms of pricing, fuel
consumption, distance traveled, requests pooled, and time spent
in traffic for the user’s request. This would involve the
inclusion of vehicle, traffic, and gas station sensors on the BC
network.

V. EVALUATION AND ANALYSIS

A. Simulation Methodology
To determine whether or not a BC implementation is

feasible in the context of an IoT network, we simulated the
consensus algorithms previously discussed under several
different scenarios on resource constrained devices. To
approximate a miner with constrained resources, we used the
Raspberry Pi 3 Model B, a device with 1 GB of LPDDR2 RAM,
a 4x ARM Cortex-A54 1.2 GHz processor, and a 12GB flash
hard drive. Using the Python progamming language, we
implemented and ran three different consensus algorithms,
PoW, ePoW, and PoS, all of which used SHA-256 for hash
generation.

Each simulation included 1 – 3 physical nodes connected to
the network and mining concurrently. To estimate the change
in resource consumption as the length of a BC grows, the
mining was simulated using 6 different difficulty levels, in
whch the difficulty number corresponds to the number of
leading zeros that must be present in an acceptable hash of a
block. Each consensus algorithm was first simulated with only Fig. 3. An asset tracking example using smart contracts and IoT [16].

 5

a single node connected to the network to establish baseline
resource consumption and then with three nodes mining to
quantify any efficiencies of scale as well as any overhead
introduced by network communication between nodes. Each of
our simulations ran for 30 minutes with data collected at 20-
second intervals. The data recorded includes CPU utilization,
memory writes, blocks mined, and energy consumption in
joules per block mined on the network. Power consumption
was measured using a commercial Youthink Power Monitor.
All figures reported are with respect to a single miner.

B. Results & Analysis
Table 1 presents numeric results from simulating each of the

previously discussed consensus algorithms with either 1 or 3
miners on the network. The difficulty was fixed at 5 leading
zeros for this comparison. After running all simulations, we
found that PoS has by far the lowest energy consumption per
block mined as well as the lowest CPU utilization. This is an
expected result, as the intuition behind the PoS approach is to
maintain consensus while avoiding any computationally heavy
mining. Adding additional miners to the network does not affect
the energy consumption or CPU utilization of an individual
node in a PoS scheme since a node performs no work unless it
is asked to verify a block (Fig. 4).

TABLE I

EVALUATION OF CONSENSUS ALGORITHMS
 Energy Consumed

(J/Block)
CPU

Utilization
Memory

Writes/Sec

PoW 57.24 95% 0.044

PoW (3) 88.57 100% 0.044

ePoW 57.24 95% 0.044

ePoW (3) 25.21 98% 0.054

PoS 1 10% .142

PoS (3) 1 10% .142

Both PoW and ePoW consume the same amount of energy

when only a single miner is present. However, when the number
of nodes within the network increases to 3, we note a significant

drop in energy consumption for ePoW because the block
window is preventing nodes from performing unnecessary
mining. On the other hand, energy consumption actually
increases when the nodes are following the PoW algorithm,
likely due to the redundant mining operations. Both PoW and
ePoW result in high CPU utilization due to the computationally

0

10

20

30

40

50

60

70

80

90

100

PoW PoW (3) ePoW ePoW (3) PoS PoS (3)

J /
 b

lo
ck

 m
in

ed

1.73 1.81 2.35 4.71
25.21

334.50

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

1 2 3 4 5 6

J /
 b

lo
ck

 m
in

ed

Difficulty (Leading Zeros)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6

C
PU

 U
til

iz
at

io
n

Difficulty (Leading Zeros)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

W
rit

es
 /

se
c

Difficulty (Leading Zeros)

Fig. 4. Energy consumed by each method.

Fig. 5. Energy consumed by ePoW at difficulties 1-6.

Fig. 6. ePoW CPU utilization at difficulties 1-6.

Fig. 7. ePoW writes per second at difficulties 1-6.

 6

expensive mining process, and utilization increases further
when there are more nodes on the network, presumably due to
the added overhead of propagating blocks through the network.

Memory writes can partially be seen as a function of the rate
at which blocks are being mined. A miner running PoW
performs the same number of writes regardless of the number
of nodes on the network because the total number of blocks
mined is unaffected. Meanwhile, when ePoW runs with 3
miners, the average node writes more frequently because blocks
are mined at a faster pace. The rate of memory writes for the
PoS approach far exceeds either of the mining approaches due
to the increased speed of verification. However, note that our
simulation makes the assumption that there are infinite blocks
available to be verified. In a real system, it is likely that the
mining rate implied by our simulation of PoS would exceed the
rate of actual block creation.

We also present data on energy consumption, CPU
utilization, and writes per second for the ePoW algorithm with
respect to hashing difficulty (Fig. 5 – 7). In these simulations,
the number of nodes on the network was fixed at 3. We note
that the search space becomes trivially small when the number
of leading zeros is less than 4, leading to computation speeds
that would likely exceed the speed at which blocks could be
generated. On the other hand, mining on a constrained device
becomes computationally impractical beyond a difficulty of 6.

We see that energy consumption per block mined appears
to increase exponentially as the number of leading zeros in the
required hash increases. Similarly, CPU utilization increases
quickly along with difficulty before plateauing at near complete
utilization after difficulty level 5. The trend of disk writes per
second flows in the opposite direction and is indicative of the
speed at which blocks are being mined. Unsurprisingly, as the
difficulty of solving the hash increases, blocks are added to the
chain at a slower rate and fewer writes occur.

VI. CONCLUSION
 As we have demonstrated, a BC network powered by the IoT
has the potential to power efficient, automated interactions
between various parties in manner that minimizes the burden of
trust while maintaining full verifiability. The combination of
smart contracts in a BC with the rapidly expanding ecosystem
of IoT devices can enable complex workflows that provide
significant savings of energy, time, and money.

In this paper, we present a feasibility study of a BC network
running on constrained devices, which as far as we know is the
first of its kind. We implement three consensus algorithms,
including the previously unimplemented ePoW, and evaluate
them in terms of energy consumption, disk writes, and CPU
utilization. We show that a BC network is feasible for a network
of constrained IoT devices, particularly when the traditional
PoW algorithm is augmented to promote equitable mining
opportunities and mitigate superfluous mining.

In the future, we plan to simulate the consensus algorithms
on a significantly larger network using secure communication
protocols optimized for constrained devices so as to affirm the
viability of a blockchain for the Internet of Things in a real-
world system.

REFERENCES
[1] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,

privacy and trust in internet of things: The road ahead,” Computer
Networks, vol. 76, pp. 146-164, 2015.

[2] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed internet of things,” Computer
Networks, vol. 57, no. 10, pp. 2266-2279, 2013.

[3] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
[Online]. Available: https://bitcoin.org/bitcoin.pdf.

[4] Eris Industries Documentation – Blockchains, accessed on Feb. 15, 2018.
[Online]. Available: https://www.multichain.com/blog/2015/0 7/bitcoin-
vs-blockchain-debate.

[5] Eris Industries Documentation – Blockchains, accessed Feb. 15, 2018.
[Online]. Available: https://docs.erisindustries.com/explainers/

 blockchains/.
[6] (2005). Understanding Public Key Cryptography. [Online]. Available:

https://technet.microsoft.com/en-us/library/aa998077(v=exchg.65).aspx.
[7] G. Greenspace. (2015). Avoiding the Pointless Blockchain Project.

[Online]. Available: https://www.multichain.com/blog/2015/11/
 avoiding-pointless-blockchain-project/.
[8] J.R. Douceur, “The Sybil attack,” in Peer-to-Peer Systems (Lecture Notes

in Computer Science). Berlin, Germany: Springer, Mar. 2002, pp. 251-
260. [Online]. Available: https://link.springer.com/chapter/10.1007/3-
540-45748-8_24.

[9] (Aug. 1, 2002). Announcing the Secure Hash Standard. [Online].
Available: https://csrc.nist.gov/publications/fips/fips180-2.pdf.

[10] A.M. Antonopoulos, Mastering Bitcoin: Unlocking Digital Crypto-
currencies, 1st ed. Sebastopol, CA, USA: O’Reilly Media, Inc., 2014.

[11] Prisco, Giulio (Nov 29, 2017). "The Ethereum Killer Is Ethereum 2.0:
 Vitalik Buterin's Roadmap". Bitcoin Magazine. Retrieved Jan 19, 2018.
[12] N. Szabo. (1994). Smart Contracts. [Online]. Available:

http://szabo.best.vwh.net/smart.contracts.html.
[13] N. Szabo. (1997). The Idea of Smart Contracts. [Online]. Available:

http://szabo.best.vwh.net./smart_contracts_idea.html.
[14] R.G. Brown. (2015). A Simple Model for Smart Contracts. [Online]. Ava-

ilable: http://gendal.me/2015/02/10/a-simple-model-for-smart-contracts.
[15] S. Johnson. (2018). Beyond the Bitcoin Bubble. [Online]. Available:

https://www.nytimes.com/2018/01/16/magazine/beyond-the-bitcoin-
bubble.html.

[16] K. Christidis and M. Devetsikiotis. “Blockchains and Smart Contracs for
the Internet of Things.” Special Section on the Plethora of Research in
Internet of Things, col. 4, pp 2292-2303, 2016.

[17] Y. Yuan and F. Wang. “Towards Blockchain-based Intelligent
Transportation Systems.” 2016 IEEE International Conference on
Intelligent Transportation Systems.

[18] M. Orcutt. (2017). How Blockchain Could Give Us a Smarter Energy
Grid. [Online]. Available: https://www.technologyreview.com/s/609077

 /how-blockchain-could-give-us-a-smarter-energy-grid/.
[19] L. Zheng and C Joe-Wong. (2017). Fogonomics: Pricing and

Incentivizing Fog Computing. [Online]. Available: https://www.open-
fogconsortium.org/fogonomics-pricing-and-incentivi-zing-fog-
computing/.

