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Abstract—Internet of Things (IoT) security and privacy 
remain a major challenge due to the large scale and distributed 
nature of IoT networks. Approaches driven by blockchain (BC) 
offer decentralized security; however, they involve significant 
energy, delay, and computational overhead that may not be 
suitable for the most resource-constrained devices in an IoT 
network. In this paper, we discuss how the use of BCs can not only 
enhance the security of networks, but also enable new applications 
for IoT. Further, we examine the feasibility of the use of BCs for 
IoT networks, presenting simulation results to highlight the 
overheads in terms of energy consumption, CPU utilization, and 
memory writes introduced by proof-of-work (PoW), proof-of-
stake (PoS), and efficient and equitable proof-of-work (ePoW) 
consensus algorithms. We show that under appropriate 
conditions, the ePoW consensus method enables the use of a BC 
for IoT networks as its associated overheads are outweighed by 
both gains in security and privacy and potential new applications. 

I. INTRODUCTION 
IoT consists of devices that generate, process, exchange, and 

store security- and safety-critical data. As a result, many IoT 
devices are appealing targets for various forms of cyber-attacks 
aimed at obtaining and tampering with their data [1]. Further, 
the networked devices that constitute the IoT are constrained in 
their energy consumption and computational capability, 
devoting most of their available resources to core functionality. 
Thus, the task of affordably providing security and privacy using 
traditional methods can be challenging. In addition to their 
expense in terms of energy consumption and processing 
overhead, many security frameworks are centralized and not 
well-suited for IoT applications due to their difficulty of scale, 
many-to-one nature, and single point of failure [2]. In contrast, 
IoT demands lightweight, scalable, and distributed security. 
Devices can be configured to operate more safely and reliably 
with each other’s conditions and requirements within a network 
using a private BC. Using a BC, an IoT network can be 
configured to perform both user authentication and mutual 
authentication between devices to generate and securely store 
operation records. 

In addition to providing enhanced security, a BC-based IoT 
network enables trustless relationships between devices. Smart 
contracts – self-executing scripts that reside on the BC – can be 
integrated such that the network facilitates proper, distributed, 
and heavily automated workflows. However, the use of a BC 
within the context of IoT presents several challenges; most 
notable is the design of the block creation process, or mining, 
which resides at the core of a BC’s functionality. While typically 
a computationally taxing procedure, mining must be designed 
such that it conforms to the constraints of IoT devices and does 

not compromise their core functionalities. Consequently, 
various consensus algorithms must be considered so that the 
proper method is selected based on the constraints of each 
particular IoT application. 

The goal of this work is to provide a description of how BCs 
and smart contracts work within the context of an IoT network, 
to explore use cases for the union of these technologies, and to 
present an in-depth analysis of the implementation, 
performance, and feasibility of BC consensus algorithms for IoT 
networks. The rest of the paper is organized as follows: In 
Section II, we present related work. In Section III, we discuss 
what a BC is, how a BC network operates, consensus algorithms, 
and how smart contracts can be configured and automated. 
Section IV contains a discussion of smart contracts. Section V 
contains several use cases for the application of BCs to IoT 
networks. Section VI contains our simulation methodology and 
results. Finally, Section VII concludes the paper. 

II. REACHING CONSENSUS ON A BC NETWORK 

A. Blockchains 
A BC is a distributed data structure that is replicated and 

shared among members of a network. Introduced as a ledger for 
the cryptocurrency Bitcoin [3], a BC is a continuously growing 
list of records, called blocks, which are linked together. Nodes 
on the Bitcoin network, called miners, append validated, 
mutually agreed-upon transactions to the Bitcoin BC, forming 
an authoritative ledger of transactions that establishes who owns 
what [4].  

Each BC is a log whose records of transactions are batched 
into blocks identified by unique hashes. The chain is formed 
with each block referencing the hash of the block before it (Fig. 
1). Any node with access to the BC can read it to determine the 
global state of the data being exchanged on the network [5]. A 
BC network is a set of nodes that operate on the same BC via 
the copy that each one holds. While a node can can generally act 
as a gateway to the network for several users, we will assume 
for the sake of simplicity that each node transacts on behalf ofa 

Fig. 1. Each block in the chain carries a list of transactions and a hash to the 
previous bloack. The exception to this is the first block of the chain which is 
common to all nodes in a network and has no parent. 
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single user. These nodes form a peer-to-peer network  where the 
following process is repeated: 

1) Users interact with the BC using private and public keys [6].  
  Each user uses his private key to sign his own transactions 
  which are then addressable on the network using his public 
  key. Asymmetric cryptography offers authentication, 
  integrity, and non-repudiation to the network. Each 
  transaction is broadcasted by each node to its one-hop peers. 
2) Neighboring peers validate incoming transactions prior to 
  replaying them to the rest of the network. If a transaction is 
  deemed to be invalid, it is discarded. If not, it is eventually 
  proliferated across the entire network. 
3) The transactions that have been collected and validated by 
  the network within an agreed-upon time interval are ordered 
  and packaged into a timestamped candidate block. This 
  process is called mining. The mining node broadcasts the 
  new block to the network. The choice of the mining node 
  and the contents of the block depend on the consensus 
  mechanism employed by the network. Consensus   
  algorithms can be proof-of-work based (Section III-B), 
  proof-of-stake based (Section III-C), or a modified version 
  of several methods (Section III-D). 
4) Nodes in the network verify that the proposed block 
  contains valid transactions and references the correct 
  previous block on the chain. If validated, the block is added 
  to the chain and the transactions housed within it are applied 
  to each node’s world view. If not validated, the block is 
  discarded.  

Though the above is a high-level view of how a BC network 
functions, it is evident that with enough nodes in a network, 
there exists a platform through which a set of non-trusting 
writers can share a collection of data with no trusted 
intermediary [7]. The focus of this paper is how nodes can agree 
on transactions and the order in which they are listed on the 
newly-mined block. Without a means for consensus, individual 
copies of the BC will diverge, causing nodes to have different 
views of the world state and compromising the authoritative 
chronology of the chain. In the most simplistic scenario, all 
nodes could simply vote on the order of transactions for the next 
block, with the majority deciding the block. However, in an open 
network, a single entity could join with multiple identities to 
influence the network with multiple votes [8]. To circumvent 
this attack, BC network employ various schemes for the mining 
of new blocks, described in the following sections.  

B. Proof-of-Work 
The Bitcoin BC solves the problem of an easily 

compromised network by making mining a computationally 
expensive process; as a result, impersonating multiple identities 
on a network will not result in increased influence since the 
computing resources of any single actor are limited. This 
process, called proof-of-work (PoW), specifies that any node 
can have their assembled block mined on the network given that 
it can solve a complex task. Specifically, in the case of the 
Bitcoin BC, each node must determine the correct random 
number (nonce) in a block’s header that will result in a SHA-
256 hash [9] containing the number of leading zeroes that the 
network expects [10]. The nature of a one-way cryptographic 
hash function allows any node to easily verify that a given 
answer satisfies a network’s requirements and adopt the 
associated block into its world view. It is possible that forks may 

still occur under this mechanism when multiples nodes 
successfully mine blocks nearly simultaneously. In this event, 
the fork is resolved by the next block since PoW dictates that 
nodes should adopt the fork that carries the greatest amount of 
work; i.e., whichever fork grows longer first will be used.  

There are several difficulties associated with the use of a 
PoW scheme on a BC network. First, the consensus algorithm 
wastes energy by consuming hashing power to obtain one block 
compensation during the competitive mining process. 
Furthermore, energy is spent unnecessarily by the numerous 
nodes mining the same block concurrently. This inefficiency 
calls into question the feasibility of such a scheme in a resource-
constrained IoT scenario. In addition, the PoW method is 
susceptible to concentrating compensation among nodes with 
greater hashing power.  

C. Proof-of-Stake 
A different method of validating transactions and achieving 

distributed consensus on a BC network is through a proof-of-
stake (PoS) scheme. The gains of a PoS-based network come in 
the form of significantly less computation during the mining 
process. Instead, the creator of the next block is determined 
through a combination of random selection and wealth or age 
(i.e. a node’s stake in the network). Aside from advantages in 
terms of energy-efficiency, PoS schemes offer a greater 
incentive strategy for member nodes since each node is seeking 
to guard its stake in the network through mining. In contrast, 
nodes can mine without possessing any stake under a PoW 
scheme and are thus only seeking to maximize their own gain.  

However, several issues exist with PoS-based networks. 
Several plausible schemes exist for conspiring actors to sabotage 
a small enough PoS network by approving invalid blocks to the 
network and assuming a loss of currency in the process. Most 
notable, however, is the uneven distribution of wealth based on 
nodes’ stakes. Nodes with a large stake in the network will be 
rewarded for their participation relative to their stake, granting 
the power to influence the network to a concentration of nodes. 
Several networks are working to solve such inequity [11]. 

D.  PoW Based on Equitable Chance and Energy-Saving 
Proposed by the BC-based IoT contract platform Hyundai 

Digital Asset Currency (HDAC), ePoW, an algorithm based on 
equitable chance and energy-saving, can significantly reduce the 
number of nodes actively participating in PoW. The motivation 
behind the scheme is to distribute equitable mining opportunities 
as well as to minimize energy waste from excessive hashing 
power spent during competitive mining. 

The ePoW consensus algorithm reduces the mining 
monopoly using a block window concept (Fig. 2). By avoiding 
spontaneous mining attempts during the block window 
application period once mining is successful, ePoW reduces 
wasteful energy consumed in excessive hashing calculations. 
Even if a greedy node opts to neglect this prescribed mechanism 
and succeeds in mining a new block, its block will not be 
recognized as valid in the entire network. The block window size 
can be expressed in the form of a time function, Ws = f(t), where 
f(t) increases in proportion to time. As the window size gradually 
increases, so does the difficulty for nodes to monopolize the 
mining process. As a result, a more equitable distribution of 
mining is achieved in the network. 
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III. SMART CONTRACTS 

A smart contract, introduced in 1994 by Nick Szabo, is 
defined as “a computerized transaction protocol that executes 
the terms of a contract” [12]. At the highest level, a smart 
contract is a contractual clause translated into code and 
embedded into hardware or software to enforce its terms so as 
to minimize the need for trusted intermediaries between 
transacting parties and the occurrence of malicious and 
accidental exceptions to its terms [13]. In the context of a BC-
based IoT network, smart contracts are scripts stored on devices 
connected to the BC. Since the contracts reside on the BC, they 
have a unique address that can be referenced in a transaction 
when it is triggered; they can be executed independently and 
automatically executed in a prescribed manner on every node 
in the network.  

A smart contract exhibits the following properties: 
1) The contract has its own state and can take custody of    
     assets on the BC [14].  
2) The contract expresses business logic in code, e.g. “trade 1   
     unit of X for every 2 units of Y received”. 
3) The contract should describe all possible outcomes of the  
     transaction that it is responsible for. 
4) The relationship established between parties in the contract   
     is data-driven. 
5) The contract is triggered by messages and transactions sent  
     to its address. 
6) The contract is deterministic, i.e. the same input will  
     always produce the same output. Without this  
     requirement, a contract can execute on every node in the  
     network and return different results for each node,  
     preventing the network from reach consensus on the  
     result. A BC-based platform should therefore employ  
     only deterministic contracts. 
7) The contract resides on the BC. Therefore, its    

        implementation is visible to all network participants. 
8) All network participants get a cryptographically verifiable  

     trace of the contract’s operations since all the  
     contract’s interactions occur via signed messages on the  
     BC. 

A BC-based network with smart contracts can support both 
transactions (asset transfers) and interactions (multi-step 
processes) between mutually distrustful counterparties since 
the transacting entities can inspect the contracts to identify 
outcomes before engaging in them, have certainty of the 
contract execution due to the distribution of the network, and 
have verifiability throughout the process since all interactions 
are digitally signed.  

IV. USE CASES 

A. Software Distribution 
As IoT-based companies become more common and their 

devices proliferate, there will be an increasing need for them to 
distribute software in order to keep the IoT device ecosystem 
sustainable in terms of security and functionality [16]. The 
current centralized model of software distribution involves a 
high maintenance cost for manufacturers and a degree of 
cooperation on behalf of the consumers. These issues can be 
solved with a peer-to-peer model that can operate transparently 
and distribute data securely. 

Consider a BC network one which all of a manufacturer’s 
IoT devices reside. The manufacturer can deploy a smart 
contract that allows them to store the hash of its latest firmware 
update onto the network. The devices, having either shipped 
with the smart contract address or discovered it through another 
transaction, can query the contract to learn about and request 
the new firmware. While the first requests for a file will be 
serviced by the manufacturer’s own node, later requests can be 
serviced by any node that the file has propagated to. As a result, 
software updates can occur automatically without any user 
interaction. Further, a device that joins the network after the 
manufacturer has ceased its participation can still retrieve 
necessary firmware updates and validate that it is receiving the 
correct files. 

B. Sharing of Computational Resources 
Fog computing extends the existing definition of Cloud 

computing to include the growing number of networked edge 
devices, including IoT devices, as well as smart clients among 
end users [19]. For example, a wearable device such as a smart 
watch might utilize a connected smartphone’s computational 
resources to analyze the data that it collects as opposed to 
sending its data to a remote cloud. Fog computing thus creates 
an opportunity for users to save money and time on both the 
transportation of data and the cost of computation. A BC 
network can enable an economy of resource sharing across edge 
devices. 

Large amounts of processing power and storage sit unused 
in the world’s idle routers, tablets, phones, and sensors. 
Consider a BC network to which all of these devices are 
connected and on which a task can be distributed among the 
nodes. Depending on the latency constraints, price 
considerations, security restrictions, and the complexity of the 
task, smart contracts on the network can arrange to distribute 

Fig. 2. The ePoW consensus algorithm. 
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the task to nodes at prices already agreed upon. Since the 
accommodating resources would otherwise be left unused, such 
a sharing economy would be certain to bring greater efficiency 
to the existing landscape of computing services. In addition, 
latency-sensitive tasks could be more easily serviced on edge 
nodes than on the cloud, ensuring higher response times in 
time-sensitive applications. 

C. Efficient Energy Distribution 
The electricity sector, though still heavily based on massive, 

centralized power plants that generate power sent over long 
distances, is becoming increasingly distributed with smaller 
power generators and storage systems like solar panels and 
electric-vehicle batteries connected to the power grid [18]. 
Smaller components of this system can struggle to maximize 
their value due to the inefficiency of compensation for 
electricity production; however, a BC network with smart 
contracts could enable producers to receive compensation 
immediately.  

With such a network, local nodes could trade energy with 
each other prior to selling electrons to the grid. Smart contracts 
on the network could prescribe rates based on surge times, 
power availability, and, in the case of wind- and solar- 
harvested energy, forecasted production. Benefits of an IoT-
enabled network could extend to producers as well. For 
example, sensors and actuators located in windmills could be 
informed of a decrease in demand for electricity and turn off 
machinery that would otherwise experience unnecessary 
degrees of wear through extraneous operation. Further, power 
generated by renewable sources of energy could be easily 
distinguished from that generated by fossil fuels due to the 
transparency of the network. 

D.  Supply Chain Verification 
In a supply chain example where a container leaves the 

manufacturer’s site (point A), gets transported via railway to 
the neighboring port (point B), gets shipped to the destination 
port (point C), gets transported by truck to the distributor’s 
facilities (point D), and finally reaches the retailer’s site (point 
E) (Fig. 3), a BC-based IoT network can maintain a ledger 
verifiable by all parties involved in the movement of the 
container. 

Historically, each stakeholder in this process maintains his 
own database to keep track of the asset and updates it based on 
inputs from other parties. In the proposed scenario, a BC 
network run across all of the IoT sensors and actuators along 
the supply chain would update with cryptographic verifiability, 
update automatically, and form an easily-auditable ledger of 
information. 

 
 

 

 

 

E. Intelligent Transportation Systems and Smart Transit 
Intelligent transportation systems (ITS), a fast-growing 

sector involving IoT, cloud computing, and data-driven 
decisions, needs to consider many issues in its development 
including security, trust, and the social complexity of decisions 
between vehicles [17]. So that the ITS ecosystem maintains 
stability, safety, and effectiveness, there is a critical need to 
develop a secured, trustworthy, and decentralized architecture 
to facilitate the smooth and intermediator-free flow of data and 
assets among ITS entities. A BC network that connects sensors 
and actuators found in automobiles and traffic signals with 
users and key decision makers is an elegant solution for this 
application.  

Next, consider a protocol called Transit that connects a 
city’s cars, buses, taxis, etc. with users seeking transportation 
via internet-connected devices and maintains a distributed 
ledger that records all of its users’ past trips, credit cards, 
favorite locations, etc. [15]. The standards for sending a Transit 
request onto the network would be entirely open and anyone 
who built an application to respond to the request is free to do 
so. For example, city governments could build Transit 
applications for their taxi drivers or public buses, ride-sharing 
companies can build applications for their employees, and 
bicycle-share collectives could build applications for their 
assets, all to field requests. Developers could create shared 
marketplace apps where all potential vehicles using Transit 
could compete for business in one place. 

All of the phones and vehicle sensors connected to the 
Transit network could engage in smart contracts to determine a 
user’s optimal pricing and time preference for a trip. Trip 
services could interact with each other to bid each other down 
to the point of optimal efficiency in terms of pricing, fuel 
consumption, distance traveled, requests pooled, and time spent 
in traffic for the user’s request. This would involve the 
inclusion of vehicle, traffic, and gas station sensors on the BC 
network.  

V. EVALUATION AND ANALYSIS 

A. Simulation Methodology 
To determine whether or not a BC implementation is 

feasible in the context of an IoT network, we simulated the 
consensus algorithms previously discussed under several 
different scenarios on resource constrained devices. To 
approximate a miner with constrained resources, we used the 
Raspberry Pi 3 Model B, a device with 1 GB of LPDDR2 RAM, 
a 4x ARM Cortex-A54 1.2 GHz processor, and a 12GB flash 
hard drive. Using the Python progamming language, we 
implemented and ran three different consensus algorithms, 
PoW, ePoW, and PoS, all of which used SHA-256 for hash 
generation. 

Each simulation included 1 – 3 physical nodes connected to 
the network and mining concurrently. To estimate the change 
in resource consumption as the length of a BC grows, the 
mining was simulated using 6 different difficulty levels, in 
whch the difficulty number corresponds to the number of 
leading zeros that must be present in an acceptable hash of a 
block. Each consensus algorithm was first simulated with only Fig. 3. An asset tracking example using smart contracts and IoT [16]. 
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a single node connected to the network to establish baseline 
resource consumption and then with three nodes mining to 
quantify any efficiencies of scale as well as any overhead 
introduced by network communication between nodes. Each of 
our simulations ran for 30 minutes with data collected at 20-
second intervals. The data recorded includes CPU utilization, 
memory writes, blocks mined, and energy consumption in 
joules per block mined on the network.  Power consumption 
was measured using a commercial Youthink Power Monitor. 
All figures reported are with respect to a single miner. 

B. Results & Analysis 
Table 1 presents numeric results from simulating each of the 

previously discussed consensus algorithms with either 1 or 3 
miners on the network. The difficulty was fixed at 5 leading 
zeros for this comparison. After running all simulations, we 
found that PoS has by far the lowest energy consumption per 
block mined as well as the lowest CPU utilization.  This is an 
expected result, as the intuition behind the PoS approach is to 
maintain consensus while avoiding any computationally heavy 
mining. Adding additional miners to the network does not affect 
the energy consumption or CPU utilization of an individual 
node in a PoS scheme since a node performs no work unless it 
is asked to verify a block (Fig. 4). 

 
TABLE I 

EVALUATION OF CONSENSUS ALGORITHMS 
 Energy Consumed 

(J/Block) 
CPU 

Utilization 
Memory 

Writes/Sec 

PoW 57.24 95% 0.044 

PoW (3) 88.57 100% 0.044 

ePoW 57.24 95% 0.044 

ePoW (3) 25.21 98% 0.054 

PoS 1 10% .142 

PoS (3) 1 10% .142 

 
Both PoW and ePoW consume the same amount of energy 

when only a single miner is present. However, when the number 
of nodes within the network increases to 3, we note a significant 

drop in energy consumption for ePoW because the block 
window is preventing nodes from performing unnecessary 
mining. On the other hand, energy consumption actually 
increases when the nodes are following the PoW algorithm, 
likely due to the redundant mining operations. Both PoW and 
ePoW result in high CPU utilization due to the computationally 
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Fig. 4. Energy consumed by each method. 

 

 

Fig. 5. Energy consumed by ePoW at difficulties 1-6. 

 

 

Fig. 6. ePoW CPU utilization at difficulties 1-6. 

 

 

 

Fig. 7. ePoW writes per second at difficulties 1-6. 
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expensive mining process, and utilization increases further 
when there are more nodes on the network, presumably due to 
the added overhead of propagating blocks through the network. 

Memory writes can partially be seen as a function of the rate 
at which blocks are being mined. A miner running PoW 
performs the same number of writes regardless of the number 
of nodes on the network because the total number of blocks 
mined is unaffected. Meanwhile, when ePoW runs with 3 
miners, the average node writes more frequently because blocks 
are mined at a faster pace. The rate of memory writes for the 
PoS approach far exceeds either of the mining approaches due 
to the increased speed of verification. However, note that our 
simulation makes the assumption that there are infinite blocks 
available to be verified. In a real system, it is likely that the 
mining rate implied by our simulation of PoS would exceed the 
rate of actual block creation. 

We also present data on energy consumption, CPU 
utilization, and writes per second for the ePoW algorithm with 
respect to hashing difficulty (Fig. 5 – 7). In these simulations, 
the number of nodes on the network was fixed at 3. We note 
that the search space becomes trivially small when the number 
of leading zeros is less than 4, leading to computation speeds 
that would likely exceed the speed at which blocks could be 
generated. On the other hand, mining on a constrained device 
becomes computationally impractical beyond a difficulty of 6.  

We see that energy consumption per block mined appears 
to increase exponentially as the number of leading zeros in the 
required hash increases. Similarly, CPU utilization increases 
quickly along with difficulty before plateauing at near complete 
utilization after difficulty level 5. The trend of disk writes per 
second flows in the opposite direction and is indicative of the 
speed at which blocks are being mined. Unsurprisingly, as the 
difficulty of solving the hash increases, blocks are added to the 
chain at a slower rate and fewer writes occur. 

VI. CONCLUSION 
 As we have demonstrated, a BC network powered by the IoT 
has the potential to power efficient, automated interactions 
between various parties in manner that minimizes the burden of 
trust while maintaining full verifiability. The combination of 
smart contracts in a BC with the rapidly expanding ecosystem 
of IoT devices can enable complex workflows that provide 
significant savings of energy, time, and money. 

In this paper, we present a feasibility study of a BC network 
running on constrained devices, which as far as we know is the 
first of its kind. We implement three consensus algorithms, 
including the previously unimplemented ePoW, and evaluate 
them in terms of energy consumption, disk writes, and CPU 
utilization. We show that a BC network is feasible for a network 
of constrained IoT devices, particularly when the traditional 
PoW algorithm is augmented to promote equitable mining 
opportunities and mitigate superfluous mining. 

In the future, we plan to simulate the consensus algorithms 
on a significantly larger network using secure communication 
protocols optimized for constrained devices so as to affirm the 
viability of a blockchain for the Internet of Things in a real-
world system. 
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