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Image Forgery Detection: Developing a Holistic 
Detection Tool 
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I. INTRODUCTION 
In a media environment saturated with deceiving 

news, the threat of fake and altered images in our 
lives has become increasingly apparent. Top-grossing 
movies contain countless synthesized images that, 
not long ago, would have been extremely difficult to 
produce. Further, today’s smartphones are capable of 
digitally manipulating even ordinary photographs 
with very little effort. Increasing capabilities in 
computer graphics and artificial intelligence have not 
only enabled new ways to analyze and create images 
and videos, but also have the ability to do so on an 
increasingly vast scale.  

“Why did Stalin airbrush those people out 
of those photographs? Why go to the trouble? 
It’s because there is something very, very 
powerful about the visual image. If you change 
the image, you change history. We’re 
incredibly visual beings. We rely on vision – 
and, historically, it’s been very reliable. And so 
photos and videos still have this incredible 
resonance. How much longer will that be 
true?” [1] 

Hany Farid, photo-forensics expert, on the 
growing impact of forged images 

With these dangers in mind, we see great value in 
a tool capable of identifying fake images and 
reporting to users the nature of an image’s alterations. 
In this document, we will detail our progress so far in 
developing such a tool. Section II discusses the 
detection methods that we have examined along with 
their various implementations. Section III discusses 
the structure of the tool. Section IV concludes the 
document and previews future work for the tool.  

II. METHOD EVALUATION 
The following methods presented are not a 

completely comprehensive set of detection 
algorithms; however, we have chosen them for the 
prolific nature of the forgeries that they detect. For 

each strategy (double JPEG compression detection, 
copy-move detection, color filter array (CFA) artifact 
detection, noise variance inconsistency detection), 
we have studied several methods to arrive at the most 
accurate algorithms to include in our tool. This 
process involved a comprehensive literature review – 
the methods presented here were initially chosen for 
their high reported accuracies, number of citations, 
and availability and ease of implementation. Upon 
testing each method against its peers on an identical 
set of data appropriate to each group, we arrived at a 
clear choice for each method in terms of accuracy and 
efficiency.  

A. Double JPEG Compression Detection 
Due to high compression ratio and good quality, 

the JPEG image format has been widely used in 
cameras and image processing software. Double 
compression in JPEG images occurs when a JPEG 
image is decompressed to the spatial domain and then 
resaved with a different (secondary) quantization 
matrix. Considering that double JPEG compression 
typically occurs when altering JPEG images, it is of 
great significance to us in detecting image forgeries.  

During JPEG compression, the image is first 
divided into disjoint 8x8 pixel blocks Brs, r, s = 0, … 
, 7. Each block is transformed using the discrete 
cosine transformation (DCT): 

𝑑"# = %
𝑤(𝑟)𝑤(𝑠)

4 𝑐𝑜𝑠
𝜋
16 𝑟

(2𝑖 + 1)𝑐𝑜𝑠
𝜋
16 𝑠(2𝑗

5

6,89:
+ 1)𝐵68 

where 𝑤(0) = (1)/(√2)	and 𝑤(𝑟 > 0) = 1. The 
DCT coefficients dij are then divided by quantization 
steps stored in the quantization matrix Qij and 
rounded to integers 
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The JPEG compression finishes by ordering the 
quantized coefficients along a zig-zag path, encoding 
them, and finally applying lossless compression. 
Decompression works in the opposite order. After 
reading the quantized DCT blocks from the JPEG 
file, each block of quantized DCT coefficients D is 
multiplied by the quantization matrix 𝑄, 𝑑M"# = 𝑄"# ∙
𝐷"# , and the inverse discrete cosine transformation 
(IDCT) is applied to 𝑑M"# . The values are finally 
rounded to integers and truncated to a finite dynamic 
range (usually [0, 255]). The block of decompressed 
pixel values 𝐵O  is thus 

𝐵O = 𝑡𝑟𝑢𝑛𝑐 Q𝑟𝑜𝑢𝑛𝑑 R𝐼𝐷𝐶𝑇V𝑄"# ∙ 𝐷"#WXY , 𝑖, 𝑗	 ∈
{0, … ,7}. 

Due to the rounding and truncation involved in 
compression and decompression, 𝐵O  will, in general, 
differ from the original block 𝐵. We say that a JPEG 
image has been double-compressed if the JPEG 
compression was applied twice, each time with a 
different quantization matrix with the same alignment 
with respect to the 8x8 grid.  

Yang et al. analyze the error block in JPEG 
compression, showing the statistical differences of 
the error blocks between singly and doubly 
compressed images and proposing a set of features to 
characterize such differences. They adopt a support 
vector machine (SVM) to learn the discriminability 
from the 13 extracted features for detecting double 
JPEG compression with the same quantization 
matrix. Hou et al. propose a more powerful JPEG 
compression detection method based on the extended 
first digit features of DCT coefficients. They first 
assume that the value 0 is the first digit of the 
coefficient with value zero, and then use the 
probabilities of the first digits of quantized DCT 
coefficients including value 0 form individual 
alternating current modes to detect double 
compressed JPEG images. Their experimental results 
show very robust performance that outperforms the 
other existing algorithms available.  

Thing et al. introduce a method where each round 
of classifier is generated from a unique, non-
overlapping and small subset composing … 

Wang and Zhang propose a double JPEG 
compression algorithm based on a convolutional 
neural network (CNN). The CNN is designed to 
classify histograms of DCT coefficients. The 
histograms were extracted as the input, and then a 

one-dimensional CNN is designed to learn features 
automatically from these histograms and perform 
classification. Their method produced encouraging 
reported results; however, it has some limitations. 
The computational complexity of the CNN is 
considerably high, thus generating a tradeoff between 
the localization accuracy capability and the 
computational effort required. Finally, Pevny and 
Fridrich present a method for the detection of double 
JPEG compression using SVM classifiers with 
feature vectors formed by histograms of low-
frequency DCT coefficients.  The double 
compression detector is implemented with a soft-
margin SVM with the Gaussian kernel 𝑘(𝑥, 𝑦) =
exp	(−𝛾 ∥ 𝑥 − 𝑦 ∥c . An important feature of the 
method is its ability to detect double JPEG 
compression not only for cover images but also for 
images processed using steganographic algorithms. 
They built a maximum likelihood estimator of the 
primary quality factor in double compressed images. 
Since the main application of their work is 
steganalysis, the estimator was constructed to work 
for both cover and stego images. They evaluate the 
accuracy of their estimator on a large set of images 
with 34 primary quality factors, achieving a reported 
accuracy better than 90%.  

B. Copy-Move Detection 
Copy-move image forgery involves using spliced 

areas from the same or different image or images to 
produce new objects or hide areas in the forged 
image. Very often this is performed with the intention 
to make an object “disappear” from the image by 
covering it with a segment copied from another part 
of the image. Textured areas, such as grass, foliage, 
gravel, or fabric with irregular patterns, are ideal for 
this purpose because the copied areas will likely 
blend with the background and the human eye cannot 
easily discern any suspicious artifacts. Because the 
copied parts can come from the same image, their 
noise components, color palettes, dynamic ranges, 
and other important properties will be compatible 
with the rest of the image and thus will not 
necessarily be detectable using methods that look for 
incompatibilities in statistical measures in different 
parts of the image. To make the forgery even harder 
to detect, one can use feathered crop or retouching 
tools to further mask any traces of the copied-and-
moved segments.  

Any copy-move forgery where copied regions 
come from the same image introduces a correlation 
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between the original image segment and the pasted 
one. This correlation can be used as a basis for a 
successful detection of this forgery. Because the 
forgery will likely be save in a lossy JPEG format, 
and because tools to further hide the manipulation 
may have been used, the segments may not match 
exactly but only approximately. Thus, the 
requirements for a detection tool include: 

1) The detection algorithm must allow for an 
approximate match of small image segments. 

2) The detection algorithm should work in a 
reasonable amount of time while introduction few 
false positives. 

3) The tool should be designed with the 
assumption that forged segments will likely appear in 
connected components rather than as a collection of 
very small patches or individual pixels.  

4) The detection algorithm should be robust to 
rotation, scaling, and blurring of the copied region. 

Mahmood et al. divide images into overlapping 
square blocks and use DCT components to represent 
each block. Gaussian RBF kernel PCA is applied to 
each block to produce a lower-dimensional feature 
vector representation that increases the efficiency of 
feature matching. Their results demonstrate high 
precision in detecting multiple copy-move forgeries 
in the same image, even in the presence of blurring, 
noise, and compression. Evdokimova and Kuznetsov 
propose a method for copy-move forgery detection 
using Local Derivative Pattern (LDP) based features. 
The LDP feature is computed by applying n-order 
derivatives in the neighborhood of a central pixel and 
assigning a code to each pixel by comparing the 
derivatives along the same direction for two adjacent 
pixels. A hash value is calculated from the LDP and 
used to construct a histogram in which frequency of 
appearance is used to identify forged regions. The 
LDP-based method is robust to distortions of the 
duplicated area and has lower computational 
complexity than competing algorithms. 

Cozzolino et al. propose a method for image 
forgery detection using local descriptors based on the 
image noise residual that adapts methods commonly 
applied in steganalysis. Local residual features are 
extracted using a CNN closely associated with the 
Bag-of-Words paradigm before being passed through 
a linear SVM for classification. Their method 
achieves high accuracy for forgery detection in the 
presence of median filtering, Gaussian blurring, 

additive noise, resizing, and JPEG compression. 
Ulutas and Muzaffer utilize AKAZE features and 
nonlinear scale space to detect copy-move forgery, 
with specific focus on detecting object removal 
forgeries. AKAZE features use nonlinear diffusion 
filtering to preserve object boundaries that are often 
lost due the Gaussian blurring utilized by other 
features such as SIFT and SURF. Their method 
achieves high precision and is robust to rotation, 
blurring, additive white noise, and JPEG 
compression.  
Alberry et al. propose an algorithm to detect copy-
move forgery using Scale Invariant Feature 
Transform (SIFT) and Fuzzy C-means (FCM). They 
construct local feature descriptors using SIFT and 
perform fuzzy clustering on feature keypoints using 
FCM, in which each keypoint can belong to multiple 
clusters. The resemblance between descriptors is 
used to determine whether forgery is present. The 
authors achieve speedup of over 15% over the 
traditional SIFT algorithm by clustering only on 
central keypoints of different regions instead of 
identifying all keywords in the picture. 

C. CFA Artifact Detection 
Among the numerous fingerprints that can be left 

behind during an image forgery, CFA artifact 
detection involves those left by the interpolation 
process. Image interpolation is the process of 
estimating values at new pixel locations by using 
known values at neighboring locations. During the 
image life cycle, there are two main phases in which 
interpolation is applied: 

1) Acquisition process to obtain the three color 
channels (red, green, and blue). The light is filtered 
by the CFA before reaching the sensor so that for 
each pixel only one particular color is gathered. Thus, 
starting from a single layer containing a mosaic of 
red, green, and blue pixels, the missing pixel values 
for the color layers are obtained by applying the 
interpolation process, also called demosaicking. 

2) Geometric transformations to obtain a 
transformed image. When scaling, rotation, 
translation, and shearing, are applied to an image, 
pixels within the image are relocated to a new lattice, 
and new intensity values must be assigned to such 
positions by means of interpolation of the know 
values. This is also called resampling. 

The artifacts left in the image by the interpolation 
process can be analyzed to reveal image forgery. 
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Ideally, an image captured with a digital camera, in 
the absence of post-processing, will show 
demosaicking artifacts on every group of pixels 
corresponding to a CFA element. On the contrary, 
demosaicking inconsistencies between different parts 
of the image, as well as resampling artifacts in all or 
part of the analyzed image, will but image integrity in 
question. 

Katre and Chandel focus on the study of 
demosaicking artifacts at the local level. By means of 
an analysis of such traces they localize image 
forgeries whenever the presence of CFA interpolation 
is not present. They propose a new feature that 
measure the presence of these artifacts even at the 
smallest (2x2) block level, thus providing a forgery 
map with very fine localization as output. The authors 
assume s(x, y) to be an observed image where 
(𝑥, 𝑦) ∈ 𝑍c. The prediction error can be obtained as: 

𝑒(𝑥, 𝑦) = 𝑠(𝑥, 𝑦) −%𝐾(𝑢, 𝑣)𝑠(𝑥 + 𝑢, 𝑦 + 𝑣) 

where 𝐾h,i is a bidimensional prediction filter. In 
the ideal case 𝐾h,i = ℎh,i  where ℎh,i  is the 
interpolation kernel of the demosaicking algorithm. 
In general, they assume that 𝐾h,i ≠ ℎh,i since the in-
camera demosaicking algorithm is usually unknown. 
By assuming that the local stationarity of the 
prediction error is valid in a (𝑠𝐾 = 1)𝑋(2𝐾 + 1) 
window, it is possible to define the local weighted 
variance of the prediction error: 

𝜎nc(𝑥, 𝑦) =
1
𝑐 op % 𝛼"#𝑒c(𝑥 + 𝑖, 𝑦 + 𝑗)

r

",#9sr

t − (𝜇n)cv 

Where 𝛼"# are of suitable weight and 𝜇n is a local 
weighted mean of the prediction error and c is a scale 
factor that makes the estimator unbiased for each 
pixel class. Using their proposed feature, it is possible 
to find an imbalance between the local variance of 
prediction errors when an image is demosaicked – if 
the local variance of the prediction error of acquired 
pixels is higher than that of the interpolated pixels, 
the expected value of L(k,1) is a nonzero positive 
amount. If the image is not demosaicked, the 
difference is zero.  

Prakash et al. present a frequency domain method 
for image demosaicking detection. Frequency 
domain-based techniques are used to obtain the 
luminance and chrominance of the image which gives 
the accurate information about pixel distribution. In 
the next step, a bilinear interpolation approach is 

utilized to estimate the missing values of the pixels. 
To overcome existing issues of the efficient 
reconstruction of images, they propose a radial basis 
neural network approach for image reconstruction.  

Fernandez et al. present a 4-step approach to CFA 
artifact detection: 

1) Assuming that the configuration of the CFA 
pattern is known, a simple estimation of the 
interpolation kernel for the green channel is generated 
based on ordinary least squares. Only acquired pixels 
will be considered to get a better estimation. 

2) An estimation of the image is obtained by using 
the interpolation kernel computed in the previous step 
on every pixel. Then, from the residuals between the 
estimation and the original image the standard 
deviation for interpolated and acquired pixels is 
computed.  

3) Next, a probability map is generated to decide 
if a pixel belongs to the set of resampled data. 
However, the complimentary error function is used, 
which defined the probability of a pixel belonging to 
the resampled set. 

4) Finally, the DCT is applied on blocks of size 
BxB to verify the presence of the CFA artifacts within 
the block. The DCT coefficient for the highest 
frequency is considered as an indicator to detect 
tampering. Unusual values (lower or higher than 
expected) in the coefficient for the highest frequency 
after applying DCT provide evidence for image 
tampering. 

Singh et al. develop a CFA artifact detection 
method for videos; however, it is designed to be 
applied to individual frames and is therefore suitable 
to study in this work. The authors obtain the 
probability of the presence or absence of CFA 
artifacts in every block of a given image conditioned 
on the observed values of their chosen feature L (see 
Katre and Chandel) using a Bayesian approach. They 
denote the hypotheses of presence or absence of CFA 
artifacts in a given image by M1 and M2, and since for 
a tampered image both M1 and M2 are true, L(k,l) can 
be modeled as a mixture of two Gaussian 
distributions. Their model is used to generate a 
likelihood map that indicates the probability of every 
block of a given image as being authentic or forged 
based on the probability of the presence of CFA 
artifacts in that block. To further improve localization 
accuracy, the authors employ a low-pass spatial filter 
to better highlight the connected regions in the 
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forgery map since tampered regions are typically 
physically connected.  

D. Noise Variance Inconsistency 
A commonly used tool to conceal traces of 

tampering in the addition of locally random noise to 
the forged image regions. Typically, the amount of 
noise in an authentic image is uniform across the 
entire image. Adding locally random noise my cause 
inconsistencies in the image’s noise. Therefore, 
detection of various noise levels in an image may 
signal tampering.  

Noise degradation is the main cause of failure of 
most existing blind forgery detection methods. These 
methods are able to work correctly when the amount 
of present noise is small. For example, in CMFD, 
additive noise causes duplicated regions to not match 
closely. This causes a significant decrease in the 
performance of CMFD methods. The same 
phenomenon can be observed in resampling detection 
methods which are almost always necessary when 
two or more images are spliced together. In this case, 
noise degradation causes loss of detectable 
correlation among neighboring pixels. This 
correlation is brought into the signal by the 
interpolation step. Further, when two or more images 
are spliced together, the forged image may then 
contain several regions with various noise levels.  

Pan et al. (2011) propose a detection method to 
effectively locate image forgeries based on 
inconsistency in image noise levels by first 
segmenting the image into blocks for initial noise 
estimation (Zoran and Weiss). They then cluster the 
blocks into clean and tampered blocks. The detected 
suspicious regions are further segmented into smaller 
blocks for refined noise estimation and classification 
in the second phase to obtain final detailed detection 
results.  

Pan et al. (2012) expand upon their initial research 
by estimating noise variances across different regions 
in an image to take advantage of a statistical 
regularity of natural images – that the kurtosis values 
of natural images in general band-pass filtered 
domains are positive and tend to be close to a 
constant. Then, approximating kurtosis of natural 
images across different band-pass filtered channels to 
be a positive constant, they construct an objective 
function using the relationship between the image 
kurtosis and noise variance in the band-pass filtered 
domain to estimate the global noise variance of the 
entire image. Their objective function is robust to 

infrequent outlying kurtosis values. More 
appealingly, the objective function has a closed-form 
optimal solution. Spliced regions are detected by 
segmenting the estimated local noise variances. 

Kobayashi et al. exploit the nature of photon shot 
noise mixed into image signals (which depends on the 
cameral model). Photon shot noise results from the 
quantum nature of photons, where the variance of the 
number of photons coming into a camera is strongly 
correlated to the mean following a Poisson 
distribution. Thus, this correlation between the 
variance and the mean can be used as a powerful clue 
to detect inconsistencies in forged images. Given an 
image that contains some forged regions, the authors 
first analyze noise characteristics at each pixel. Once 
they obtain the per-pixel characteristics, the noise 
level functions (NLFs, Liu et al.) are fitted to the 
distribution using maximum a posteriori estimation. 
Likelihood is defined as the chi-square distribution to 
deal with the fluctuation in the noise characteristics 
resulting from a limited amount of sampled data. 
They simultaneously estimate the posterior 
probability of forgery and the parameters of the NFL 
using the expectation maximization algorithm. They 
represent an NLF as a linear combination of its basis 
functions by synthesizing a number of NLFs 
corresponding to various noise parameters to obtain a 
set of linear basis functions via PCA. 

Finally, Mahdian and Saic propose a method 
based on a few main steps: wavelet analysis, tiling 
sub-band HH (which gives the diagonal details of the 
image with the highest resolution) with non-
overlapping blocks, blocks noise variance estimation, 
and blocks merging.  

III. IMAGE FORGERY DETECTION TOOL 
 To avoid redundant operations and to increase 

the efficiency of our forgery detection tool, we 
evaluated each method against its peers on the same 
respective sets of images containing forged and 
natural images of the same nature to determine the 
detection accuracy of each algorithm. The resulting 
accuracies are reported in the following tables. 

 
DOUBLE JPEG COMPRESSION  
YANG ET AL. .953 
HOU ET AL. .991 
THING ET AL. .908 
WANG AND ZHANG .796 
PEVNY AND FRIDRICH .918 
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COPY-MOVE DETECTION  
ALBERRY ET AL. .982 
ULATAS AND MUZAFFER .812 
MAHMOOD ET AL. .934 
COZZOLINO ET AL. .942 
EVDOKIMOVA ET AL. .879 

 
CFA ARTIFACT DETECTION  
KATRE ET AL. .752 
PRAKASH .786 
FERNANDEZ ET AL. .86 
SINGH ET AL. .906 

 
NOISE VARIANCE INCONSISTENCY  
PAN ET AL. (2011) .786 
PAN ET AL. (2012) .81 
KOBAYASHI ET AL. .745 
MAHDIAN AND SAIC .784 

 

IV. CONCLUSION AND NEXT STEPS 
In this paper, we have presented only a small 

subset of the techniques available for the detection of 
forgeries in images. Further, even the state-of-the-art 
in terms of detection accuracy may not offer a 
realistic solution for all image detection applications 
due to run time concerns. It is for these reasons that 
this tool and our research will be ongoing as new 
detection methods are discovered and as methods to 
evade these detection methods proliferate.  

Currently, our immediate focus is on distribution 
and optimization of this tool so that it can be used 
efficiently by anyone, regardless of technical 
knowledge. Currently, the tool exists as a command 
line interface, available on GitHub. In a matter of 
clicks, the tool and its requisite libraries can be 
installed on any machine and run with a single script. 
Our next efforts will involve moving towards a web-
based distribution, through which a graphical user 
interface can enable even easier use of the tool. 
Further, we hope to redesign some of our more time-
consuming operations and algorithms to run in a 
distributed fashion so that the time constraints of 
using our tool become more realistic. 
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